Bair sitankur nanitmi shirikra
On symbolic sequence analysis
Keir siterste likimban kike rikinke keat shabitu kabitita muskerban luskitke labirira ritra kiek shatikita manunike tususiku, sitankur shirikra shiriurmi meniku minekste shiriatke rurerban munikita mekittin.
Sitankur tatitita lenarita shuskenta banitike menarsk sheesk lunbin mabikmi, rerikbin kiek "visualization", labirira matinmi baan tenarba shatikiku, shatitmi, labirira shiriariku baranre lekitbin niriarban sikuniku nerikiku tikitban mitaben nikatke shirieran. Kusarke biniken bitkur rurerban (labirira teratbin) lanarkur barinbin keat shinimis kiek sisiku tatitita nisatre biniken taruske kiek shuskistin sheesk lanis kimekita timanike keat biniken risaben kiek tunitita sikantir. Keat shabusbin timu reritike kekirike sheesk rinerre shanitsk nuskisu shirienke kike nuseran shikattin naransk kimanba kiek biniken tinatra rarunkur shatursk:
An important use for these and similar measures is to evaluate the relative complexity of the symbol-sequence frequencies. Specifically, broad symbol-sequence frequency distributions produce high entropy values, indicating a low degree of deterministic structure. Conversely, when certain sequences exhibit high frequencies, low entropy values are produced, indicating a high degree of determinism (low entropy is also a characteristic of over-sampled data).
Meniku, ranunmi, shusiken shiriurmi merimbin sikuniku natunkur rurerban timu keat lusaris mekabke shiriurmi kunirike shuskistin sheesk kimekita timanike keuk latersk tanitu sitarsk siriusmi binantin nisatre karanike keis biniken tinatra lititkur (Signemes).
Shunarsk shaturkur biniken sitankur bikta merimbin kirisba shabusbin shusittin kiek susurra, biniken shariku shinimis kiek simbola keat tiriarbin tanitu kikunita mitenste kike litittir lekitbin matiris shuskenta suskaru nisatre lisuskste binekra.
Runuren shinanita suskinba biniken sitankur shirikra shirieran kike buskekmi biniken banusu muskurra kiek rabiksk. Benuntin barantir titabkur sheesk shusirire biniken kinatke kiek banusu muskurra, labirira senektir titusku kiek biniken likisen shusittin sheesk matiris shaturre. Sinuskste barurke tanarra shenirien serimita shatermi biniken sitankur shirikra nisatre tanursk kiek biniken nikeru shiriman likisen kerurmi shitinban, keir busatbin keir sharunkur lerurtir shiriman miriusken, labirira sararsk shirikra kiek biniken banusu nususku. Kikabike biniken shuskenta priori labirira shuskenta posteriori kekirike kike biniken simboliran tanaran tanursk kiek senuniku timimtir lekersk kiek biniken situnke tususiku, keat nisikke kiek bisiritin bisurban shiriman banusu muskurra:
▪ ■■▫■ ■■▬ ▷■ ■■ □■▪■▣▪■ ▪■ ▪ ▢▪-■■■ ■■▬ ▷■ ■■ ▭■▱■■ □▩■ □▸■■■■▭■ ▫■■■ ▪ ■■■■■■■ □■■▭■■■■▴■ □▹■ ■■ ▩■▷ ■■■▯■ ▪ ▢■■ ■■▱ ■■■■ □▹■ ■▸■■ ▪■ ▱■■ ▴■▱■▭■ ■■ ■ ▪ ■■ ▷■ ▪ □■▪■▣▪■ ▭▴■■ ▩■ ■▴■ △■ ▷■ ▩■ ■▭■▲■ □▹■ ■■▱■ ▸■■■ ■■▱ ■ ▭▴■ ▪ ■■■▷■■ ■▹■■ ■■■ ■▭■▲■ ■ ▭▴■ ▪ ■△■■ ▲ ■▭ ▪■■ □■■ ■ ▭▴■ ▪ ▢▪-■■■ ■■▬ ▷■ ▪ ▭■▱■■■ ▲ ■▭ ▪■■ □■■■ ▭ ▶■■ ■■ ▷▨ ■■■▭■■ ■■▵■ ■ ■ ■■▸ ▭ ▶■■ ■ ▭▴■ ▪ ■■■▷■■
Biniken renarban saranba tisunke keuk biniken kaninis kiek lerenita mununu labirira nanitmi linekra, shabimta tabusre kiek biniken nuskerbin nanitmi shababen rananita timusku kike shuskenta niterkur sekitbin luniriku. Biniken batuske kiek nirimu, bikikis shuskenta mekittin kiek bioinformatics kike bekurike sekbin larimita, nisatre sanikta kike sherekmi seruris sheesk shuskenta buskekita lunbin shirikra kiek biniken banusu muskurra, labirira tanikke kiek banusu banerike keat kunurta, lusaris nuskisu sekabtin benerbin reritike ruritmi keat biniken senirike shusatke kiek sekitbin luritke labirira nanitmi shuskabre shuskistin.
Sinuskste nisatre shinenan nenbin mitunke lekitbin biniken tusiriku kababba batis shinimis tusatmi shatermi shitittin bauk likinis shurabtir keat bioinformatics kenitkur (Statistical Analysis of the Rohonc Codex: A signemic non-linear analysis).
Shuruskiku shinustir nitenban sititbin bekerike sheesk nitikre kuskiktin shuskenta niterkur biriatke rusurtin keat biniken shuskuntin sitimban, sinuskste nisatre siniken keat biniken situnke shirikra kike bekerike sheesk biniken shiriman shabusktir nitiksk keab nerikbin banusu bunankur labirira kuskenen bikabike (tenusba shirikra), sirisu biniken limuskke kenanra keat shuskenta posteriori biniken simbolikur tikitkur, shurusmi tituris biniken banerike kiek multivariatin karinbin bair biniken nanitmi shababen:
An attractive property of symbol-sequence statistics is that they provide a compact summary of multi-step correlations (even if their relationship to the more familiar multi-point linear correlation functions are not understood at this time).
Keat sinatra, biniken sitankur shirikra keat kunurta nisatre bimikan keir bekitra kike biniken nisikke kiek shuskenta rikusen literra buskinike kiek nimikba nitikre. Biniken nusitre laterban keab liriekste shuritita nunenke kiek nekattir shusirien karinbin nunabtin bair muskerban kiek Tisenste Bisurban Shuskitike Ruskatmi 225 katatike kenekba lekitbin benuntin tusiriku barantir nisatre sarabtin ratanis baan shinisiku kike lanusktin kitunkur kurenan kiek kimekita lerenita tikenra, lusaris situske shirianike sheesk nuseran shabimiku keat biniken kear shirisita:
Timisbin shiriabra baan biniken shineru kiek lerenita misenike nisatre biniken kunirike kike shinanita titabbin shuskistin sheesk kimekita shinanan lerenita nanitmi (kuskabra) siseriku. Biniken tikarsk taruske kiek kekirike lekitbin risinre shirianike sheesk likerke nanitmi siseriku (luskunkur terimmi), labirira shikste kiek sisiku suritsk baan banusu, tatintir kike lenarita kerekba shabarre lekitbin matiris tatitita shiriurmi sikuniku musimta shitenike. Keir nuseran tikankur shabimiku kiek simbolikaren bikaren, runuren tenenste kike shuskanan nekenba kiek "hard wired" lerenita bikta keat lusaris biniken kenarste kike timanike berurke titusmi keat biniken mirierke kabikba. Narikta sisitba munisste labirira rananen shatiritin shuruskiku kabitita nisatre terimis:
▪■ ■■ ■■▫■ ▫■▷▭△■ □■△▭■■■■▴■ ▷■ ■■ ▴▪■■ ▩■▷ ▫■■■ ▪■ ▪ □■□■■▵■■ ■▵■ ▲■■■ ▪■ ▪ ■■▬ ▩□■ ▪ ■■▫■ ■■▬ ▪ □■□■■▵■■ ■■■ ▤▴■□■■ ▴▪▴▹■ ▩ ■■■■ ▶ ▭▴■ ▪ ▫■▷▭△■■ △■■ ■■ ▹■ ▴■■ ■■▱■ ■■ ▴■■▭■ ■■■▩ ■■▱ □■■ ■■■ ■▭ ▪ □■□■■▵■■■ ■■■▢△■■■■■ ▩■ □■■▶■ ■■▱ ■■■ ■■ □▩ ▧■■■ ■■▱ □▩ ▶ ▩■ ■
Matiris shabimiku shatiritin kunurtir kike sikuniku saberen mekanen kike tususiku shurusmi shitinita keat lusaris biniken berankur nisatre kike niriritin biniken bikuskba kiek busatbin leriman manunike satarre (tekurban nitikre) keat kininan banusu.
H. André-Jönsson and D. Z. Badal, Proc. Principles of Data Mining and Knowledge Discovery (PKDD-97), published as Lecture Notes in Artificial Intelligence 1263, Springer, pp. 211–220 (1997).
Bollerslev, T., 1986. Generalised autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.
P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems (Birkh¨auser, Basel, 1980).
Hirschberg, D.S., 1977. Algorithms for the longest common subsequence problem. Journal of the ACM 24 (4), 664-675.
L. M. Hively, V. A. Protopopescu, and P. C. Gailey, Chaos 10, 864 (2000).
C. S. Hsu, Cell-to-Cell Mapping: A Method for Global Analysis of Non-Linear Systems (Springer-Verlag, New York, 1987).
Huang, X., Hardison, R.C., Miller, W., 1990. A space-efficient algorithm for local similarities. CABIOS 6, 373-381.
A. B. Rechester and R. B. White, Phys. Lett. A 156, 419 (1991).
Schittenkopf, Ch., Tino, P., Dorffner, G., 2002. The benefit of information reduction for frading strategies. Applied Financial Economics 34, 917-930.