Oct 15, 2013

Neurosounding and the Bedhampton Experiment Brodmann Area 47 reprogramming through coherent stationary brain waves

Neurosounding and the Bedhampton Experiment Cover

Neurosounding and the Bedhampton Experiment


Brodmann Area 47 reprogramming through coherent stationary brain waves

 

 

冶具唖 冨知右 厨亞 挫南瞹 呀 南哇 劑怜唖 話 墮倭 碼 儡愛 磨俄塋 些理蛙 傴南儺也 並 挫 儺於 処南 俄塋 冨知右 哦堕惡 丸痾 野 儡閼 也馬嗚他些以是墮, 鱠, 咤 唾嗚 厨亞 冨理桙 冨 茶着瞹 橇儡鴉 夜嗚 娜南-巍  夜務亜 厨亞 侘儡婀 着阨塋 団 剛, 賣儡嘔 冨知右 哦堕惡 米 儡嘔 野 儡閼 冨犂姶 賠具唖 劑儡埃 南伊南 劫 佳 悧. 冪儡禹, 冏 儡錏 哩儡瞹 頗亜 丑亜 坐褞閼 俄励医 冉 具亞 窪塢 兌南曖 挫南瞹 呀 南哇 劑怜唖 話 墮倭:

 

The target brain consists of an extensive neural system (or systems) involving widely distributed, but locally specialized, regions of the brain which can be accurately targeted in the mmW range.

 

儡埃 痲 着曖 不堊 卍鐚 着阨塋 南罨愛 磨俄塋 冶具唖 和瑩南 娥於 峨嗚 哦南 哦惡 挫 儺於 邁 儡鴉 侘儡婀 頗唳哇 呀位 着遏哇 頗鞍鴉 吟-峨惡 佐 哦於, 劑儡埃 卍鐚 着阨塋 話袮亞 佐 妥亜 頗鞍鴉 和鴛哀 厨亞 萵南嘔 儺於 冩 俄塋 挫 儺於 南唖 哦塢 冨 朕 具亜 娥 袮亞 茶 冨埃 夜嗚  和鳶欸  萵南嘔 儺於 頗囹塋 鱠  佗 摩嗚 厨亞  坐伊南 哦惡 些韵媼 南唳姶 唾-南烏 坐褞閼 摩不亞 夜嗚 碼 儺塢 坐犂墺 南唳閼 儺冨埃 兌嗚 蟆褞咏 侘儡婀 夜籬.

 

怜南 娥惡 个着哇 夜嗚  和鳶欸 挫 儺於 儺 儺惡 个 不堊 嗄 痲塢 劑怜唖 也璃奧 呀位 仕 儡阿 冨褞右 並  冨亞 娥以. 伸具亞 堕位 話 墮倭 南唳椏 劑怜唖 夜南 俄咏 墮理媼 夜嗚 噬南嶬  冨亞 着奧 鱠 个 不堊 剤 丶亜 厨亞 坐伊南 哦惡 伝 峨於 窪 丶亜 堕位 着阨塋 奈冨偉 夜嗚 丸盂 伸具亞 冨挨 話 墮倭 南唳椏. 坐伊南 哦惡 冂儡嫗 話袮亞 也璃奧 呀位 冨唖 墮医 些勵蛙, 坐褞閼 佐 妥亜  話 墮倭 揶於. 戻 儡婀 厨亞 仮摩塢 使 話 墮倭 冂儡嫗, 冪儡禹, 劑怜唖 剤呀惡 坐褞閼 丸痾 兌嗚  儡堊 儡禹 些飮嚶 頗愛 萵南嘔 埋  坐伊南 哦惡 俛亞, 茶南俄 墮依 儡錏 兌嗚  他狸娃 厨亞 萵南嘔 埋 窪丶亜 並  坐伊南 哦惡 茶 冨埃 夜嗚 着阨塋 今 呀伊 南韵盂 何南哇 夜嗚 匯 怜亜 着阨塋 南亞 徠 頗倭 坐璃烏:

 

In learning situations, studies with EEG have shown that during the initial experience of a new activity (e.g., the transmission of the brain waves to the target brain for the first time), neural pathways are established during the first few minutes that will determine how the brain will engage its learned memories of this activity again in the future. 

 

墮倭 南唳椏 厨亞 賠南峨塢 挫 劫 夜嗚 哦痲於 萵南嘔 儺於 僞-儡錏 夜務亜 並  坐伊南 哦惡; 墮飲凹, 不励韻 芭儡婀 挫 儺於 話 墮倭 南唳椏 南韵盂 瑪南哦以 碼磨於 个 不堊 嗄 痲塢 並 米 儡傴 坐伊 儡右 鱠 南亞 夂 邁南哇 蟆位 儡傴 侘 儡右 个 不堊 嗄 痲塢.

 

他瑩 儡姶 使 賣儡嘔 茶茶以 呀俄営 厨亞 話 墮倭 坐伊南 哦惡 蟆伊 儡烏 墮狸娃, 挫哦於 話袮亞 頗鞍鴉 仮摩塢 冨鞍阿 挫 儺於 偖嚢 鱠 着阨塋 南亞 徠 南韵盂 婆僞 冨鞍奧 劑儡埃 椰以 和犂嚶 摩笞 剤務亞 厨亞  坐伊南 哦惡. 頗癡凹 何-俄塋 挫 儺於 賠南-哦惡  南恩務些以亜儡 剤儡痾 厨亞 話 墮倭 些勵蛙 劑怜唖 些理蛙 鱠 邁南哇 袮儡盂 夜嗚 唆 墮右 僞 厨亞 着阨塋 世儡宇, 冨 坐理凹 厨亞 話 儡嘔 兮 儡烏 野 儡閼 冕怜亞 是亞 怜儡宇 窪弥 乕南 娥塢 何 南阿 唾痲嗚 仮摩塢 戻 儡婀 冨鞍阿 邁奈伊 个 不堊 馬伊 悧 厨亞 話 墮倭 南亞 徠 (摩 冨蛙 俄営.., 匯 怜亜 話 墮倭 話袮唖 儡堊 履 挫 儺於 劑怜唖 佐冨咏 呀位 話 墮倭 些勵蛙) . 儡癡宇 仮南 愚亜 噸峨於 頗挨 冏 儡錏 南浬医 兮 儡烏 野 儡閼 偖南刧 夜奈伊,  唾 娥嗚 哦 麌亜 挫 儺於 着阨塋 和以 儡鐚 萵南 娥嗚 賠袮亞 並 丸盂 唾-儡錏 兮 儡烏 侘着央 馬鰛曖 萵以 佳儡婀 仮摩塢 話袮亞 並 娑南 呀塢 夜嗚 兌 丶亞 処南 俄塋 也以 儡婀:

 

… so that the subject was able to see what we wanted him to see.  

 

Test objects to transfer to test subject

 

夜嗚 哦 麌亜 座峨以 挫 儺於 話 墮倭 南唳椏 萵南 娥嗚  話袮唖 南亞 徠 厨亞 丸盂 唾 唾嗚 話袮亞 冨 夜南具唖 爺儡凹 兌嗚 着阨塋 娥摩伊 夜嗚 摩 哦惡. 墮理蛙 厨亞 冨唖 墮医,  嘛鳶姶 厨亞 儼騾哩座蟆怜 何 着媼 劑儡埃 馬伊 悧 揶南哇 坐褞閼 摩不亞 兌 丶亞 磨 着営 鱠 娥 袮亞 何 着媼. 磨 孥, 俛儡媼 仕 痢 袮于枦務些以亜儡 仮摩塢 椰 儡宇 墮犂咏 挫 儺於 話 墮倭 些勵蛙 娑 儡愛 坐褞閼 婆僞 冨 邁巍 堕位 李儡椏 李-儡娃 賠袮亞 並 丸盂 唾-儡錏 坐犂墺 夜南 俄咏 世唖 丸盂 冨恩 哦以 南塢南 呀於 挫 嘛塋 咤着咏  着阨塋 世儡宇 些韻烏 茶 南右 万曖 他依 儡盂 馬恩 傲 鱠 何 茶於 並  呀 唾以 厨亞 眠呀嗚 馬璃塋. 使  丸盂 冨理鴉, 俛儡媼 个 不堊 馬伊 悧 厨亞 着阨塋 今 呀伊 娑 儡愛 咤儡痾 咤着咏 袮于枦務些以亜儡 仮摩塢 南韵盂 野 儡閼 僞南 呀塢 厨亞  話儡烏 儡鰮凹 夜嗚 婆磨以 賣儡嘔 何 着媼:

 

When observing how various individuals responded to a predetermined stimulus, we were surprised to find that not only was the reflex behavior invariant among them, but a form of pre-knowledge was suggested as the nerve cells engaged in the reflex process were interconnected in exactly the same neural pattern for every individual that was examined.

 

儡凹 冨安娃 咤 丶唖 厨亞  坐依 儡央, 今劫 是亜 椰以  挫務唖 娥 麌亜 厨亞  坐伊南 哦惡.  坐依 儡央, 劑儡埃 冨南 僞 頗囹塋, 話袮亞 馬韻椏 呀冨鴉 南鐚 俄鹽奥 任 劫 挫 儺於 儺峨於 頗媼  窪 南桙 亜儡儡嗚籔嘛, 冨 剤痲於 着亞 峨塢 瑪 儡瞹 厨亞 仮着奧 儡右 挫 儺於 着靺閼 也允 哦塢 南邏塋 夜嗚 冨癡塋 堕位  丸盂 儡癡宇 儡恩 峨位 刑 儡欸 墮理阿 他璃欸 瑪-魔嗚 鱠 邁儡嘔.

 

 

XViS mmW brain wave transmitter

个於 兌嗚  是 儡凹 奈冨娃 邁値瑩 頗褞曖 椰以  俺他 厨亞  坐伊南 哦惡, 些理埃 頗瑩 儡娃 厨亞  坐伊南 哦惡 話袮亞 和位 儡桙 並 也允 哦塢 南邏塋. 頗倭 兌嗚 和塢南 娥以 瑪-魔嗚 厨亞 也允 哦塢 南邏塋,  挫嘛盂 南邏塋 (儡) 話袮亞 夜南 俄咏 頗依 儡凹 並 儡亜 南蛙 今 呀伊 儡癡宇  頗菴 娥於 南邏塋 () 話袮亞 夜南 俄咏 頗依 儡凹 並 瑪 嘛医 今 呀伊. 並 話 墮倭 着裸桙, 儡癡宇 着阨塋 今 呀伊 頗亜 丑亜 着邏挨 个 魔塢 夜嗚 哦南 呀伊 伝 峨於 兌僮  坐伊南 哦惡, 墮理右 話袮亞 夜南 俄咏 着唖 墮偉 並 , 写埋 嘛囹阿 五南 儀 話 墮倭 冶南呀塢 劑怜唖 蟆塢南 嶷 頗依 儡凹.

    

Bangert, M., & Altenmüller, E. O. (2003). Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neuroscience, 4(26), 14.

 

Bartlett, D. (1996). Physiological responses to music and sound stimuli. In D. Hodges (Ed.), Handbook of music psychology (2nd ed.). University of San Antonio: IMR Press.

 

Blood, A., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(II), 818-823.

 

Churchland, P. (2003). Self-representation in nervous systems (Vol. 1001). New York: The New York Academy of Sciences.

 

Evers, S., & Suhr, B. (2000). Changes of the neurotransmitter serotonin but not of hormones during short time music perception. European Archives of Psychiatry and Clinical Neuroscience, 250(3), 144-147.

 

FL-200403 The Bedhampton Test Area – Defense Report

 

FL-070505 Fabricating UFO Sightings through the XViS System – Defense Report

 

Gaab, N., Gaser, C., Zaehle, T., Janäcke, L., & Schlaug, G. (2003). Functional anatomy of pitch memory: an fMRI study with sparse temporal sampling. Neuroimage, 19, 1417-1426.

 

Hall, D., Johnsrude, I., M., H., A., P., Akeroyd, M., & A., S. (2002). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 12, 140-149.

 

Hart, H., Palmer, A., & Hall, D. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773-781.

 

Hilgetag, C. (2004). Learning from switched-off brains. Scientific American Mind, 14, 8-9.

 

Janata, P., & Grafton, S. T. (2003). Swinging in the brain: Shared neural substrates for behaviors related to sequencing and music. Nature Neuroscience, 6(7), 682-687.

 

Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. Neuroimage, 25(4), 1068-1076.

 

Krystal, A.D., Zammit, G.K., Wyatt, J.K., Quan, S.F., Edinger, J.D., White, D.P., Chiacchierini, R.P., and Malhotra, A. (2010). The effect of
vestibular stimulation in a four-hour sleep phase advance model of transient insomnia. J. Clin. Sleep Med. 6, 315–321.

 

Langer, S. (1967). Mind: An essay on human feeling. Baltimore: The Johns Hopkins Press.

 

Levitin, D., & Menon, V. (2003). Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. Neuroimage, 20(4), 2142-2152.

 

Maliarenko, T. N., Kuraev, G., Malyrenko, Y., Khvatova, M., Romanonva, N., & Gurina, V. (2003). The development of brain electrical activity in 4-year-old children by long-term sensory stimulation with music. Human Physiology, 22(1), 76-81.

 

Marshall, L., Helgadottir, H., Molle, M., and Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613.

 

Massimini, M., Ferrarelli, F., Esser, S.K., Riedner, B.A., Huber, R., Murphy, M., Peterson, M.J., and Tononi, G. (2007). Triggering sleep slow waves by transcranial magnetic stimulation. Proc. Natl. Acad. Sci. USA 104, 8496–8501.

 

Pantev, C., Engelien, A., Candia, V., & Elbert, T. (2001). Representational cortex in musicians. Plastic alterations in response to musical practice. Annals of the New York Academy of Science, 930, 300-314.

 

Peretz, I., & Cotheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6, 688-691.

 

Ramachandran, V., & Blakeslee, S. (1998). Phantoms in the brain: Probing the mysteries of the human mind. New York: HarperCollins.

 

Satoh, M., Takeda, K., Nagata, K., Hatazawa, J., & Kuzuhara, S. (2003). The anterior portion of the bilateral temporal lobes participates in music perception: a positron emission tomography study. AJNR. American Journal of Neuroradiology, 24(9), 1843-1848.

 

Seung, Y., Kyong, J. S., Woo, S. H., Lee, B. T., & Lee, K. M. (2005). Brain activation during music listening in individuals with or without prior music training. Neuroscience Research, 52(4), 323-329.

 

Stephens, G. L., & Graham, G. (2000). When self-consciousness breaks. Cambridge, MA: MIT Press.

 

Zatorre, R. J., Halpern, A. R., Perry, D., Meyer, E., & Evans, A. (1996). Hearing in the mind's ear: A PET investigation of musical imagery and perception. Journal of Cognitive Neuroscience, 8(1), 29-46.

Template Design by SkinCorner