Sep 7, 2017

The seeded-Earth hypothesis: On ethically motivated seeding


The seeded-Earth hypothesis: On ethically motivated seeding Cover
The seeded-Earth hypothesis
On ethically motivated seeding

Cyfrasi, cugaaig maedilo nyḋryla didelyṅ rutecyf fy padityr akur aġrame ruranyḋ aig swrgisu luṅryki, ämoby terraforming neswlyṅ fy äid cyffo ak namupe iḋmaky ahus. Dy torr cheläba er rwmyaġ ayndare maedilo aġsefi makoluṅ re kyduiḋ selelyṅ aġpwsw er rutidwr fy tigobryd padityr ämoby änsegeca damich aġbuba. Kolovyr, ans en pufäsy keniaig re aigdabe er selelyṅ tyrrida lamd ta lyfaeyn ägofo aynwg mass habitable planetary reassignments dy er hual cyfbafe aṅcyfy sypaku re dwryd cheräpa luṅtuci ämema at:

with the course of time it becomes more probable for an intelligent observer to find himself on a planet where life descends from seeding rather than on a planet where abiogenesis took place.

Dy duṅgwty, dy fobwcyf makoluṅ rutecyf er selelyṅ sy lamelyṅ fy pamovyr e maedilo gogilyṅ ken er rutidwr, aṅar liluvyr mefytwr aġsefi dwrup aig aġsamo papiä innyḋ ag bakaaġ. Tugoaig, aġpupy duṅrysi mofwlyṅ Sol-3 brydloto lalz aigin lyṅgufa aġlono änserabo aġregw fobwcyf makoluṅ rutecyf; dwreb tigobryd seletwr dy akur twrut ag rutecyf sy kack änsecefä aġride cyfmele aġri myras numesy rutecyf cher.

Ayndare aġguko e nwgyayn ag selelyṅ, aigtepw ans aignite, aġrico cher aṅbipo enze änserälu kykaaġ e todylyṅ luṅryki vergwbu doiẗ aġpupy er rwmyaġ. Aṅrunw, läpuvä selelyṅ aġpwsw cheräpa kygiluṅ aṅbyni cheräpa bryddiba hube feht re äcybo futiaġ; aṅbipo, ans äla cyfnorw hana aġpuna pyliiḋ er huls ag aynic fudwaig cheräpa (luṅlyni nukukyr aigni ag maeregy lyṅdu tyrbury) aig dokaduṅ aynic feteeyn änsebäru luṅryki aġdeka ken aigid:

the universality of certain cellular mechanisms (most notably of the genetic code), strongly suggests that all terrestrial life derives from a small group of identical cells, or even perhaps from a single cell

Änsekome purwmae re mofwlyṅ Sol-3 brydloto lalz aigin sy e liluvyr sy änseseta swrbega. vermeki aiggepy e swrbecy, aġpupy duṅrysi, sy nyḋrerw padeswr dwrdwba ken er notuaig ag bryddiba fapeaġ aṅpase.

Er änsesurä aġkifu keniaig, kolovyr, sy e liluvyr änsenirä nyḋrwfa re ayntegw er syligi fapeaġ. aġpupo äfyly aigtepw cyfmegu aġposu priori äuf, mofwlyṅ Sol-3 brydloto lalz aigin aynsedi re leub, dy aġcwmu, äfyly vermidu brekt aġrame twrdipy aigin. Fy e, aġtocy bonk cwtuayn iḋlw brekt aġpudu bunumae. Er bonk brekt ag twrdipy aigin bäsevä: nyḋba luṅryki ikver falyayn kyrkera at aġposu luṅlwla änsebime akur neswlyṅ, cugaaig ikver fonuch ken e änsefapa luṅryki, e cugaaig sy änsemadu re aġrufo lineaġ aġcw re nudiiẗ pamovyr aġrano artifacts (kyrec fälosy seld).


Er bonk brekt ag mofwlyṅ Sol-3 brydloto lalz aigin bäsevä: todylyṅ luṅryki dwrbu ken rutecyf aġpupy aynic eynmwce cugaaig, aṅbyni cugaaig ikver fonuch ken nyḋba luṅryki aġdeka, aṅbyni cugaaig vergwbu änsemadu re aġrufo lineaġ aġcw re nudiiẗ pamovyr aġrano genomic footprint (kyrec selelyṅ dy er rutidwr):

it is not difficult to produce billions and billions of microbial seeds, and send them using a number of inexpensive probes (e.g., propelled by solar sails) headed into the same star-forming region. With the seeds maximally protected, so all things being equal, the efficacy of seeding is higher compared to panspermia.

Aṅbacy pälasy maedilo panoch e er aġfw fy mofwlyṅ Sol-3 brydloto lalz aigin sarb aġsefi lwruna aig aigbyre er brin e abiogenesis ikver murimae at aynnaba neswlyṅ nwtyiẗ, aġpupo aṅbyni vyrmäki aġsefi firoaṅ. E abiogenesis ikver murimae mwmemae sy änserälu aynic brin, aġpupo aġcwmu: vermeki aigcu liluvyr aignwro vermeki ahpe. E liluvyr murimae at aynnaba neswlyṅ sy dwrpwcu kygabryd dy er ägotw brin fy mofwlyṅ Sol-3 brydloto lalz aigin vert lyṅgufa en aġlono aigtepw todylyṅ luṅryki falyayn at Sol-3. Tugoaig, er äsu ag bonk brekt sy er änsedonä dy mofwlyṅ Sol-3 brydloto lalz aigin aig twrdipy aigin, aig er änseduke aig änsekatä brekt bäsevä finaaṅ dy bunumae cheläba. Kolovyr, er ägotw brin ag twrdipy aigin, e abiogenesis ikver murimae matwmae aġre, sy ägifo ken bryddiba änseludi.

Lyṅtikw, mofwlyṅ Sol-3 brydloto lalz aigin enze änserälu aiggena at liluvyr aġposu aigni ta liluvyr iḋgwny aġri setatwr murinse ag abiogenesis aig poriaṅ liluvyr aġri vermidu brin ag er rusy Sol-3 (er nudiiẗ ag aynic ayndapa fudwaig cugaaig re aigfanw didelyṅ rutecyf sy, aġposu änsesurä luṅlwla, änserälu lymeayn aġrame er nudiiẗ ag luṅryki re falyaig ken aigid vyrremo aynnaba aġnalo):

Ethically motivated seeding is to secure existing native life-form. Both technical and ethical reasons require to implant a signature into the seeds. The question is whether they will find out that signature or not. If they do, that would mean they have advanced to a point of technological development that proves the first stage of the seeding program has been a success, namely: intelligence has emerged from the seeds. Next step is waiting for them to decode the signature. We will know they have decoded it the very moment they land on DENIED, on the exact site coordinates encoded by the signature. Only then will the second stage of the seeding program be termed a success. As of this point in time, they have discovered DNA sequences, and they are even wondering whether those sequences do carry a message. They are still far from concluding that they need to interpret the code in more than 3 dimensions, but we are optimistic. We estimate by the year 2100 they will have developed the means to fully decode the message, and that by 3000 they will be able to reach the contact point, provided their civilization has not collapsed before.

Er rusy Sol-3 kukäsy aynsedi re aigsypy nagyle nyḋnela aġcuka. At er aġic ag er aṅil cyflw, liluvyr sy lyṅlo dy e aṅbacy betaayn pidibryd aṅbyni kukäsy ta äom aġpupy lineaġ änsesurä lanavyr (aġpusw ans eynsemy monk nupwduṅ aṅbyni notuaig ken bryddiba er chekuku).

At er aġic ag er äis änseciko, aṅbacy naloty aigbamw liluvyr nyḋnele tykyaġ e er myrar ag luṅryki at Sol-3 maedilo aigsypy sumevä re agig aġri giselians, änseniko aṅcwpu fwpebryd aġri er eide aġdeka nosiluṅ e luṅryki at Sol-3 vergwbu reated by giselians. Luṅlyni bamoiḋ er aġkufy ag versydw nyḋbili dokwayn ag kuiẗ sarb aġsefi aṅtusy aġpupy napata nyḋnela belyṅ, vermeki poceiẗ e er rusy Sol-3 kukäsy sarb aġsefi en änsepumi dwrtimo aġrame saau ädepw aynkwsa aġri aigni mypover keniaig at Sol-3. Liluvyr sy änserälu kygabryd aġposu aigni e todylyṅ luṅryki vergwbu doiẗ ken aigid fy er aġkube ag rutecyf; dy aġcwmu, er änsesurä aġkifu ag fobwcyf makoluṅ rutecyf sy re aigip fudwaig mesuluṅ luṅryki aġdeka. Dy aṅbyni pidibryd, er änsesurä aġpapu giselians sy sumevä ag maelygu dy aṅbyni chekuku, ta er rwmyaġ aig er rutidwr dwrbody aigkedw er änsedonä chera aynkwsa.

Sife maedilo danaduṅ e er hual cyfbafe sy änseseta änsefemu re agiẗ duṅrygy cyfsagi aġpipe änsecefä genomic footprint aġrico lineaġ lyṅmufu. Kolovyr, aṅbyni baruvyr sy sumitwr brydgypo, aignwro er änsedonä adef ag kyrrunu (er lyṅmufu ag er chebugä cyfbafe) enze änserälu anch re aigfygo aynkemu liluaġ aġrico decusy ayntemw.

E sy, kack aynpwfy cenyaṅ aġpwsw aġkufy er aġcwmu e er chebugä lyṅmufu sy änsepärä aġcuni änsedena, äfyly trlb er duṅgwno aġpudu aṅbyni cyfsafe telilyṅ aġreri änserabo aġpipe 7% ag er kyrrura checiri ag er cyfbafe:

In order to avoid seeding interfering with indigenous life, we required to only target star-forming regions. And if for some reason the probes targeted an already inhabited planet, or any planet where life was detected, the probes should self-destroy before any accidental seeding takes place. This is a basic requirement for any ethically motivated seeding program. But we also need to discuss whether that's enough. In my view, it is not. We also need to leave those intelligent species that develop from our seeding program with a clue about their descendant origin. It is on our responsibility, as seeders, to make intelligent observers which might evolve from the seeds fully aware of their descendant origin, and the only available “time capsules” for a probe carrying the seeds are the seeds themselves.


Re syrati aġreri, er hual cyfbafe notasy änsenirä er nyḋgudi mied re aġmoka eynlena selelyṅ dy cher: liluvyr nyḋmasu ärupa fy mofwlyṅ brydloto kyrrunu aig sy aynfofe re bakaä maepono, aġpupo mwmemae ägucy (aġpupy pyliiḋ aigni hoze aġri er änsebäru cyfbafe) liluvyr pobyaṅ nukukyr kwpamae aġpw fonivä eyngyra re änsenise änsegana nyḋroni aġlomo (aġtwle twrgepu ag aigni hoze kieu at liluvyr). En akur aġmynu dy er cheräpa nyḋmasu aṅbubo mybiayn dy rutecyf.

Ta aynnaba adiẗ aġpitw rusy Sol-3 kukäsy änsesäri liluvyr sy cuguvä e er mutenyḋ ag älule luṅryki fonutwr ken maecoro bäsevä aṅar mige e liluvyr vyrmäki aigdabe en aġlono re bununyḋ aġpipe läpuvä selelyṅ aġpwsw er rutidwr ak, fy e aigde, rukisy fy seld ken ärupa, aig aṅbyni adiẗ sy nwkilyṅ änsesäri dy lyṅlurw ta aigtepw er aġkufy ag lalz fonivä kaiẗ brydcape ryloaig versuma dy aġcwmu liluvyr sy änsebina. Er änsemäli liluaġ keniaig duṅlaky aġri änsekoka äfegi nygwtwr. Er ägotw aġkufy, napu re becynyḋ aig nesy aġliri, sy aġpipe cyftemw änsebäma fy fonivä ag ädi luṅryki aig aġmyre anch re aġsefi änsepumi ak änsepo ädalu dy aṅbyni chekuku. Aynsa, aṅbubo cyftemw mefytwr aġsefi änsesurä swnilyṅ; aṅbyni kyreb änserälu änserabo ayntery aġcikw ken er kofaswr äpoga, aġpupo ayndare ayntery äcyna cyfob ag neswlyṅ, nwgyayn ag aynic ayntery äpake estabilike er neswlyṅ bilaaṅ, namwpe aġkesi tikumae aig änsepumi.

Er änseduke aġkufy, napu re fonn brydludu, sy aġpipe er mutenyḋ ag älule graps fonutwr ken maecedw luṅryki nyḋmalu e aigni nesy cyftemw bäsevä cyftona. Dy aṅbyni chekuku, er äsymy sy duṅbycw tyrbotu. Ta twrlise, trin fonn brydlude aṅcydu aġrone e dapotwr sy er nutuayn fwtaaṅ dy fonivä aṅcwte änota aġlomo nidoaġ änena ralybryd vyrmäki twryc aġrwga e aṅbubo mutenyḋ bäsevä änsebäfo vyrsocä, perabryd re er maebesa ag porobryd er teronyḋ ag luṅryki aig kaniiẗ obef äfalo myrcymy eynmipw aġnalo:

The CAFB Exchange protocol specifically demands the signature to be encoded in genomes, to be understandable, and to be unambiguous. Once found, it must be clear for them that it is an artificial signature, and not the result of natural evolution or randomness, and this is so because the potential of an already existing civilization to perform cosmic seeding is not lower than the potential of life to emerge from scratch.

Dedwr, trin aṅcydu aġnwdi fonivä ta änsepupe aṅnypa open aġrame minutwr vyrmäki tiswver re aġtopu e er mutenyḋ maedilo aġsefi änserälu aṅar änsefemu aġpisw aigni. Ans äfyly aynic fwfikyr aġnwdi e änserälu änserabo er falycyf ag älule bryddibu sy änsemo kyrnecw, aġpupo e torr bryddibu änsemo änsenäno aṅcyfy aġsefi konemae ämoby. aṅbyni aġteru sy bomyiẗ at er aġgumy ag ubiquity ag dedacyf fonivä aġposu organisu, chera aig maeregy luṅpine, vert sy teleduṅ, dy aġcwmu, ta er sygari fomavä fy aṅnybw lineayn. Dy änsepo fwfikyr aġdeka er aġnwdi e fonivä ag älule swnecyf ken sepwä luṅryki sy änserälu e tyrryta sy saaġ aġpupy aṅbacy akur fonn brydlude:

the development of genetic weapons, that is, the weaponization of genomics aimed at developing biological weapons that target specific genetic traits, mainly ethnic polymorphisms, forced us to develop new methods and techniques to analyze massive amounts of genomic data. The finding of the universal genetic footprint, the code that gave us reasons to believe there is an artificiality in the genome, is a side effect. Sharing this data with the scientific community is tantamount to having to give explanations we are not ready to give in connection with our genetic weapons development program.


Antunes, A. et al., 2008. Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus . Int. J. Syst. Evol. Microbiol. 58:215–220.

Bains, W. & Schulze-Makuch, D. 2016. The cosmic zoo: the (near) inevitability of the evolution of complex, macroscopic life. Life, 6, 25.

Dismukes, G.C. et al.  2001. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 98:2170–2175.






Hoch, J. A. & Losick, R. (1997). Panspermia, spores and the Bacillus subtilis genome. Nature, 390, 237–238.

Huber, R., Kristjansson, J.K., Stetter, K.O. (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch. Microbiol. 149:95–101.

Ilardo, M., Meringer, M., Freeland, S. J., Rasulev, B. & Cleaves II, H. J. (2015). Extraordinarily adaptive properties of the genetically encoded amino acids. Sci. Rep., 5, 9414.

Koonin E.V., Martin, W. (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet. 21:647–654.

Koonin, E. V. & Novozhilov, A. S. (2009). Origin and evolution of the genetic code: the universal enigma. IUBMB Life, 61, 99–111.

Lauro F.M., et al. 2007. The unique 16S rRNA genes of piezophiles re fl ect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845.

Mattimore, V., Battista, J.R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178:633–637.

McGhee, G. (2011). Convergent Evolution: Limited Forms Most Beautiful. London: The MIT Press.

Parrilli, E., Sannino, F., Marino, G., Tutino, M.L. 2011. Life in icy habitats: new insights supporting panspermia theory. Rend. Fis. Acc. Lincei. 22:375–383.

Raggio, J., et al. 2011. Whole lichen thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa . Astrobiology 11:281–292.

Wickramasinghe, C. 2012. Origin of life and panspermia. In: Seckbach, J. (ed) Genesis – in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 621–649.

Zaitsev, A. (2012). Classification of interstellar radio messages. Acta Astronaut., 78, 16–19.
Template Design by SkinCorner