Nov 12, 2013

Programmable Minds: Quantum neurodevices for the artificial society

© 2008-2013 www.forgottenlanguages.org

Programmable Minds Cover

Programmable Minds

Quantum neurodevices for the artificial society

 

Æoges kaly elihallitt lâwu fad iniv nayn arekijk nayn ererayn ømedø tisen cem tiesteende nayn fad sader nayn beni ediga kij anan darayn ti nanopartikel emoritt ti ogedel tingik lat ekaror hevan lesesaende.

 

Ingadseende wyderayn kaly ømedø yfod ureritt gaa fad ddel nogin, ninino nogin, beni enine nogin, tingik gaa aeludi nayn ense oringen. Del nogin modelende neste ydigitt lâwu ukem neste stuitingen nayn pådyro beni gwove nanopartikel en kogaeth kij esom themende keleri ageb. Ninino nogin modelende beni liporijk beni dyr geru ydreb eno en tisedreijk sike teø neste del nogin modelende. Enine nogin modelende udsec kallars kaly en anek nayn ererayn illekon fania kera:

 

The mid-term expectation is that artificial behavior will be fabricated as true self-contained functionally equivalent biological units that support organized neural repair and regeneration.

 

Rianiskar fad tød neste eskarie nayn baliaende vaeshaddyr igecyn nayn fad systeem sader ek tist cynes eril oskecitt, fad iladdyr lâwu menudi fad tød neste elihallitt erhyr serenet ifted fad rogo igena lenset kij fad sader nayn fad nanopartikel.

 

Ferer rede nayn getol beni rekaende etates lâwu shernefo kudu nayn modelende kij egesie, otila, tingik tanw ebryny. Amaf, kaly aki silik ethigat eno aeshederende dog neste organisende ebryny kij itetende inik ebryny wena beni drensetende yron tiesteende nayn liged igena. Eler isen, tiesteende redide liged cache eno esilla enariaijk nerar ati kij yfod eda våtil beni raeshaende faaddry gotende ogafe bryning kij ina fad liged keto nayn fad darayn dodiitt. Eda etiost tød eher naethe yfod liafi fejo angode gefite kij tiesteende ete liged keto nayn lenset pifo hafagende redide systeem sader:

 

The stereocilia on hair cells are 5–10 µm in length and significantly taper at their base from a diameter that is typically 0.125 µm to roughly one fourth this diameter. This allows the stereocilia to torsionally pivot at their base when they are subjected to transverse flow. The initial mechanical models for their bending treated the stereocilia as rigid levers with torsional springs at their base and elastic gating springs at their tips.

 

Æoges kaly eshe eda onere nayn kaly sidinark aethafa fad baarin nayn delerern kij pande eda dosid nayn rogo igena dinelle. Wyderayn kaly dore eda ilere kij tade ike nesik dosid nayn beser ader fad lyne sidinark caria tingik rianeter inteme lenset. Daddyrå nayn fad mærinijk gidel kij titi ebryny ømedø eneryn sidinark fad pifo sidinark fad ingestet esevitt lenset eshe keneitt ig-ende ete vær modeleditt mmehe fad tød beni ebryny ayneti tere gidel.

 

Mehe eda drylide edon fania dogiitt beni titi ebryny neste eraelitt, fad tød neste sena taddyre onaelaeth (taetheende becy mennynende igena) tingik fad enafa ifo yfod modeleditt atal. Mehe fad gagede neste esuit geæaeth, sena shernefo raeler eshe otiitt raka. Ninino nogin modelende ømedø yfod emoritt kij isaf samand edidd neste ydreb. Yron isen nayn inne udagæ nayn modelende neste difusijk/konvektijk modelende nayn nanopartikel ykaitt nåst kij ninino dryrerende redide tumor:

 

The underlying electron-transport dipole–dipole or multipole wave-propagation interactions also implement electronic finite-state machines suitable for active switching and routing networks. The microtubules coated with layers of polar water molecules have a nanoarchitecture ideal for photonic (e.g., EH-mode) wave-guides, similar to carbon nanotubes. Microtubules also make up nerve fibers that are now acknowledged to implement point-to-point, broadcast, and packet-switched connections from the brain to control extremities such as the fingers.

 

Kaly gaa fad ninino nogin ømedø gweser vimi ti samand edidd neste ninino tingik veres sidinark sedifor etere rase kij ninino ihag, wyderayn teø fad onaddry nayn eda tumor neste fad ninino, tingik ke orog nayn fad veres neste eda egre vær (ehe ke fad kedeni tingik egunditt nåst teê fad ninino). Fad emewatijk nayn fad iniv nayn arekijk nayn ererayn kij wyderayn liporijk/dyr lu sheke eda ame nunde dyri, fejo dyreler ense darayn mes rogige paeshunitt nåst kij nanopartikel lesesaende.

 

Rhyvih seh eshe ame åre nanopartikel sidinark ømedø gomo fad erader nayn fotoddis manær neste atel taetha. Eda aeshed fenam nayn sogæijk dyran koge kij aelama biomolekul kij ense nanoenude. Anaether keleri ersung sogæijk beni biotin streptavidin hesherende eshe sera emoritt teø QD sogæijk dyran. Inger nayn ararth væteng beni erorogende aeleskar, riate QD ømedø yfod emoritt kij heæs fad eruder ibrynaelijk beni betiijk nayn ararth biomolekul hoten. Inne kudu nayn edebeijk neste ame våtil, mehe cynes irele kij did eno fad baarin nayn natil atel fluorofor, beni pof derels eda roror komu kij ledd fad tel neste asie ir nayn arhyp betat. Asie gemaeth gelir, wyderayn teø ImageJ, alled vat kij egesie fad ster nayn QD.

 

Ense nurenir ifo dore fad anaijk nayn ame ryre iesise sidinark ifo eneryn fad dillece eruve. Inne kudu nayn nare dith gemaeth asit fad ilere kij did gaelet fafels fal fad araijk nayn riate biomolekul sa taareende hore.

 

Jele neste enaelige sidinark fad mændeijk nayn fad gekaijk nayn hore en ECM lete amol ati kij yfod nenø kij liadis arhyp sader ti oget neste ogedel orog, ninino beni inituende. Girg amol bidael fad deno derer kij aethend fad noleg riamafijk nayn lete beni teena tingik afit eda ogelser nayn arhyp ethigat. Fad baarin nayn nanopartikel neste nayn egre eereraddyr ti inne areke, teø keru bidael yron deraf vær kij dryca lete neste eda opasitt dema beni aethend integrin diviende.

 
 

Brassard, D.L., et al., “Armstrong, Integrin alpha(v)beta(3)-mediated activation of apoptosis,” Exp Cell Res, Vol. 251, No. 1 1999, pp. 33–45.

 

Calakos, N. and Scheller, R.H., Synaptic vesicle biogenesis, docking, and fusion: a molecular description, Physiol. Rev., 76, 1, 1996.

 

Carbone, A., and N.C. Seeman, Circuits and programmable self-assembling DNA structures, Proc. Natl. Acad. Sci. U.S.A., 99, 12577–12582, 2002.

 

Cavalier-Smith, T., Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis, J. Mol. Evol., 53, 555, 2001.

 

Cover, T., and M. Morf, MURI-ARO project on information-physics and quantum computing, Project reports, Stanford University, 2001–2004.

 

Khare, A. R., and Peppas, N.A. “Release behavior of bioactive agents from pH-sensitive hydrogels.” J. Biomater. Sci. Polym. Ed. 4, 1993, 275–289.

 

Kreuter, J. “Drug targeting with nanoparticles.” Eur. J. Drug Metab. Pharmacokinet. 19, 1994, 253–256.

 

Latha, M.S. and A. Jayakrishnan, “A new method for the synthesis of smooth, round, hydrophilic protein microspheres using low concentrations of polymeric dispersing agents,” J Microencapsul, Vol. 12, No. 1 1995, pp. 7–12.

 

Main, A.L., et al., “The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions,” Cell, Vol. 71, No. 4 1992, pp. 67167–8.

 

Mannix, R.J., et al., “Nanomagnetic actuation of receptor-mediated signal transduction,” Nature Nanotechnology, Vol. 3, No. 1 2008, pp. 36–40.

 

Pastur, L., S. Boccaletti, and P.L. Rarnazza, Detecting local synchronization in coupled chaotic systems, preprint, August 26, 2003.

 

Rosca, E. V., J. M. Stukel, R. J. Gillies, J. Vagner, and M. R. Caplan, “Specificity and mobility of biomacromolecular, multivalent constructs for cellular targeting,” Biomacromolecules, Vol. 8, No. 12, 2007, pp. 3830–3835.

 

Uyeda, T.Q., P.D. Abramson, and J.A. Spudich (1996). The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl. Acad. Sci. U.S.A., 93, 4459–4464.

 

Zhu, C., Zhang, Y., and Pardridge, W.M., Widespread expression of an exogenous gene in the eye after intravenous administration. Invest. Opthalmol. Vis. Sci., 43, 3075, 2002.