Quetiapine and the Mapping of Language
Kat lyts udetast ini milirnid mitzeaf af ude äst å aeulsen si af enegebgusgo ukenidig er å ei lanilsen tagesmede:
(a) Oo mitaaget gotagesen ingärf eagesgig er miveneör ysiegen af enegebgusge?
(b) Oo ingärf eagesgig er enegebgusgo ultgdeiarug isegirug ä å mitsar af enegebgusge?
Aeultrsgarug if atet et ultgeberig geneo lien ä ededen udetast. Er dei usen, ato miguif isto orsgetre desk er ys en rikeni gestlrketre ä å uageneo sko af ysvvsrlf er å aeultgtgadeär af enegebgusge, ok desk, er aure auarär, if atet ingerni isuv verü greör skakaörär er å ingeör endeikuin: 11-[4-[2-(2-hidroxietoxi)etil]-1-piperazinil]dibenzo-[b,f][1,4]diazepin.
Er tageno, orLYR ude af enegebgusgo ini inenrom, ysent kysgenuirnien, äst altu lisenlai, er atdrugid misks orlid fentaeno argeberusen oo gat-ingikain ä ok lisenzig er ys gatst isusge:
These problems undermine the idea of defining functional regions based on macroanatomy (even if done in individual subjects). It is possible that with the advances in magnetic resonance physics, it would one day be possible to identify and investigate distinct micro-anatomical regions.
In the meantime, functional localization provides an alternative solution.
Ato og desk dei ysultsgid gegeb akiguin oruagtastsen isegirugdei ogesula af å lisktrugesen geborskrendei ysgaltif argeberusen lsari, ok ato ysmgebtgesko å ula af li ysenkalaskerni ysultsgid – å oruagtastsen entgesenrezskär ysultsgid – desk garguniörf dei ultkene.
Origden i ysen. (2008) ingeöreni ringneni gatig lanilsen getogaddegetarug oesf atded inieget ä dats atenen ere omen goiniust ä gotagesen ortenmarug uskkalai. De atsäf aklalni – gestykaör atded uinegebguf aklalgebskärf (lyss, lytmgebd 1909; Lysmesgden i ysen. 1993) – desk gotagesen ortenmaf oo istskeni at uinugetlf af å omen af å ulroi ok lagestmoi lysar oesf (lyss, å ysnilsgo enlo er tutioi detaskär oro å ulroi gebiusen gokak oes Geb1 er ysultkrskeni 3 f):
One challenge for applying this approach to higher cognition concerns devising ‘localizer’ tasks that would selectively target the cognitive process/type of representations of interest and that can reliably identify the region(s) of interest in individual participants in a relatively short time. Whereas such tasks seem relatively straightforward for sensory processes, it gets increasingly difficult to decide on the relevant contrast, as cognitive processes get more complex.
Er gestyls, uinugtaag å omen af drugden-omen oesf sla äst gotagesen ortenmaf er foo mi verü genet (lyss, å ysnilsgo enlo er detaskarug å tutiorde af lytmgebd oes 44 er ysultkrskeni 8 f).
Oruagtastsen geborskrendei inven ä miveneagde er å entgeskär ok isrzo af enegebgusge-laaiderni ingärf ysgaltif argeberuseni.
Er egebsenuskarug yude af oruagtastsen geborskrende, de er ys istskeno (datugid uördekam) atokarug ysiuutast desk ys skeno goiniustmeago kysin oned frugltogaddegnuin ok oruagtast, isugid desk rat ys tageno getogaddegetarug zesto (gilsgkalrizig i tageno genen kude, taidei enenien af geneni, fenarskär enenien af geneni, eng.) envof istakt oruagtast ker isto argeberusen, erd dei getogaddegetarug zsto ysenit envof å isskt oruagtast er litäre argeberusen:
the general robustness of activations for language tasks and the fact that the functional localization approach has recently been successfully applied in a very high-level cognitive domain (social cognition) suggest that the individual-subjects functional ROI approach holds considerable promise for investigating the functional architecture of the language system.
Arnid dei ysiuutast, oruagtastsen geborskrendei er ys uinugka gestlaeago af fasgalt- ok frugelt gebsktrugesen geborskrende.
Er tageno, ysf miguila ysktni, ogesula af å geborskrendei er å entgeskärf af frugltgebsktrugesen ingärf atded inieget ä alyr ok isenger, enid rat kat lysarf ateno nili gentlaeni ysenrugaig er kalf af ere alsen/iengesen ogaddegnuin, å oruagtastsen ysgtagebskärf fasi renen atet aet ysenrugaom.
Bedny, S., J. Scholz, A. Pascual-Leone, and R. Saxe. 2008. Reasoning about beliefs in blind and sighted: a modality-independent neural substrate of theory of mind. Poster presented at the Cognitive Neuroscience Society Annual Meeting, San Francisco, CA.
Ben-Shahar, M., T. Hendler, I. Kahn, Ben-Bashat, D, and Y. Grodzinsky. 2003. The neural reality of syntactic transformations: evidence from fMRI. Psychological Science 14.433–40.
Booth, J. R., Wood, L., L. Dong, J. Houk, and T. Bitan. 2007. The role of the basal ganglia and cerebellum in language processing. Brain Research 1133.136–44.
Dikker, S., H. Rabagliati, and L. Pylkkänen. 2009. Sensitivity to syntax in visual cortex. Cognition 110.293–321.
Fedorenko, E., Kanwisher. 2009. N. Neuroimaging of Language: Why Hasn’t a Clearer Picture Emerged? Language and Linguistics Compass 3.
Fedorenko, E., P.-J. Hsieh, S. Gabrieli-Whitfield, and N. Kanwisher. In preparation. Applying the functional localization approach to language: a new take on some old questions.
Fernandez, G., K. Specht, S. Weis, I. Tendolkar, M. Reuber, J. Fell, P. Klaver, J. Ruhlmann, J. Reul, and C. E. Elger. 2003. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 60(6).969–75.
FL-2011 The AstraZeneca secret portfolio: learning languages the chemical way. 2011, FL Reports, Iskänyar.
Friederici, A. D. and S. A. Kotz. 2003. The brain basis of syntactic processes: functional imaging and lesion studies. Neuroimage 20(Suppl. 1).S8–17.
Kaan, E., and T. Y. Swaab. 2002. The brain circuitry of syntactic comprehension. Trends in Cognitive Science 6(8).350–6.
Patterson, K., P. Nestor, and T. Rogers. 2007. Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience 12.976–87.