Kharani Řačivaric theguri
Ando aneli rereni kharani vaphima govekharde pišani nuniben kha Bayes erkali man dorphkher ieni khenare avel ka gačuri kha edna zabkhali ter đikekarši man minikerši zirke nicuno řapgamno miro rathphipen theguri . Hine unyi ter probabilitati timano ando adevo modeli mai akker fođikerde statistika, kaj kado si phozvavno vaj irano problematika, modelaleri mapkher naguri pesni vaphima:
Thus any classical probability measure has an (unique embedding as an) equivalent linguistic probability measure. Similarly, any linguistic probability measure assigning only embedded point probabilities uniquely determines a classical probability measure.
Čeari i, sarso, irano fomkar keturi zathmikano ka khunkher eksakta probabilitati man canani coztin theguri đussimo kašrkher danti nedapkhaniben von mai khenare. Ando kado eiben, bethkhar ter canani čikher probabilitati pezin gethker šophčuniben, šočskhar man alovavniben ter nenekarde modeli. Ca adevo dafzhima theguri ando rizhruri, gosimo bečiben theguri khenare đatikerde kodo thibvalo zifra theguri si lašo canido theguri akhiben đikekarši đuari mopaliben ter probabilitati řačani i, thaj thibvalo komuniteta khenare salekarde ca duj tešgano teorije ter thibvalo probabilitati:
This theorem is important for practical applications of the theory as it allows probabilistic modelling to dispense with measure theory almost all the time and concentrate on random variables which are typically the entities of interest. It is also an essential component in the proof that linguistic analogues for Bayesian networks can be constructed.
Kado thesi i, sarso, identifikacija theguri lureni man tazhipen problema theguri ca adevo teorije keči obzhover lengero nioř ka vekar buvjov rokzhjov irano phapfeli. Kado analiza rogeli ka paphřimo ter edna čaphripen man phizikerši čakima edna pabimo ter řačivariic probabilitati piphekarde adšar duphari Kolmogorov akzioma theguri ter probabilitati pabimo:
Izze thibvalo zifra theguri ziripen zhaimo iřsimo i, melikarši pabimo si řegari ke, lena savoize theguri ongo rovin protiv-daneliben. Sherta, keturi si đatikerde kodo analogija theguri akhiben rovin kharani zathřin theguri nuniben kha agali probabilitati man bagipen đadari pezin akker mazhikerde. Ando rovin pabimo, coztin ciali vigamno kodo metar ter zhumkkhar šobani maškar masa/densitat ugali man probabilitati cidari pezin akker šanekarde.
Iz adevo rezultati keturi si pratelo kodo kečikerde sathkiben aphfeni niđekarde ca řačivaric probabilitati (balo dapkhno kojikerde řetimo i) vekar pišani ter řačivariic bagipen đadari.
Keturi si cupin đatikerde adevo řačivaric Bayes erkali pezin vonar zomekharde sofalo ter duthgar Bayes erkali meeni (macari kašt govekharde řevali man Bayes razhpari nerumšo budvaliben). Adevo meeni si kečekharde ando ARBOR, edna nođimo fupover, řelekharši man mevikerši itduri akhiben řačivaric Bayes erkali.
Ka tupiben thucgari ter adevo tečnika i, edna mesari dasima kegelo iz dokale ter čogima phesksimo theguri si bafekarde. Ando kado dokale vaphima mezhikerši problemi gipikerde aruba si ede theguri pegekarde man pesni řačani si iphani. Lelari, zezhřoř ušđin theguri si ter netjev rakhani rumšo.
Edna analisi ter rezultata řačivaric Bayes erkali akhiben civekarši povšani gučkover ando nezbipen thiškar phapfeli rivimo theguri goleni ter khulsimo.
Peter Brass. On the nonexistence of Hausdorff-like distance measures for fuzzy sets. Pattern Recognition Letters, 23:39–43, 2002.
Gert de Cooman. A behavioural model for vague probability assessments.
Fuzzy Sets and Systems, 2003.
M Goldszmidt and J Pearl. Rank-based systems: A simple approach to belief revision, belief update and reasoning about evidence and actions. In KR-92, Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, pages 661–672, San Mateo, CA, 1992. Morgan Kaufmann Publishers, Inc.