Nov 18, 2013

The Nipah Virus: NiV-st337 and the exobiological defense program - Se Nipah Čeřer: NiV-st337 žu se exobiologiž seďęt

The Nipah Virus Cover

 

The Nipah Virus

NiV-st337 and the exobiological defense program


Se Nipah Čeřer

NiV-st337 žu se exobiologiž seďęt

 

 

"Death typically ensues within three days after illness onset likely secondary to brainstem involvement and respiratory failure"

 

"NiV-st337 is our way to welcome non-humans"

 

Paramyxovirus (paramyxočeřer) moňůme zuċ jeċąz ġağędizá lĕč zažez žu žuląk ďeňoz čaš, žĕrže zuċ nolŏzeni ċa kuċučže žiťůne, jeğůl zuċ liğiren žĕrže žiđĕš se keċąm feċęk sužąn.

 

Ġiďęr čečŏz ġuťel tiċedka paramyxovirus voďůlima žu suğůk lĕč se foċoz zižąr fuğęr lĕč ğeťičra žĕrže se KFS zeġĕt đuďůč šařen žu řelĕšima ňąd biďęk faďŏr đoťătaz zižąr gošele žeřed zaťęr Žižalaz, se prototypiž morbiđivirus žaċŏt čeřer (MV) šuřęr zuċ ďek řuk se biďęk faďŏr čoťaze RNA čeřer ničĕčima ťid noğam. Řočoz đuďůč "sclerosingra panencephalitis" (SSPE) ďuđut goġuš zařăm dařąz zoďęl loňęk seqĕla lĕč žaċŏt đoďĕtra nuġaš žĕrže ručęz ċĕz se zeċůn ničĕčima. Rilům se soňirizá vočănaz, žu fodak ġuďŏta, biosafetyef žuřęr 4 (BSL-4) čađŏre Nipah čeřer (NiV) buřůr zoťąn ďolen žĕrže ješęr zuġek ťid se KFS lĕč zuċ žulezže lĕč vačănta nuġaš ċĕz se đuďůč ničĕčima. Luđiz ċaš saċor žĕrže vuđut žu taċŏn se leťąz nežer ďuňăm noňar šuš zažez paramyxovirus žiđĕš se KFS vežolra ċĕš ďĕdaz niřařa ġuš ġiďęr mošům đąz žu virologiž čiňůzo:

 

Even though it is difficult to ascertain the extent of direct viral killing or the ‘bystander’ death, the net effect of NiV-330 family infection, and that of the 337 strain in particular,  remains neuronal death, as documented in the case of the two Giselian individuals. Astrocytes, on the other hand, also respond to the infection by increasing cytokine production, lactic acid release, and glucose mobilization in all but the three recovered Varginha specimens.

 

Zožăč lůr se điġęz lĕč ċĕš fulereni, ġůš buřůr zoťąn žulęr lůn duċęk žu ğelak voďůlima feğĕzra žuląk đaňĕm lĕč paramyxovirus ġođĕk. Řošid žačum zižąr zeğid se gudak ziďęr šařąk se zoonotiž ğiďiš lĕč leš lĕč šuš foċoz. Ťid ruġaz, jidak žiđęk lĕč se siġęr neurotropiž paramyxovirus ċaš tižor ťid šeġŏr, MV žu šiğoš čeřer (MuV), zižąr salĕšdim zažez ďeňoz.

 

Zoonotiž voďůlima ďĕdaz đoċĕd az žuląk foċoz zižąr tužač deďun zaňoč ďuňăm ġăn ďošŏnže žoďąš lĕč pathogenien lůš ďuđut ġiřăšaz ňąd ničĕčima ġăn foċoz čaš jidak voċęm zuġek ťid zuċ đoğiš geğeto žăr co vuňečima lĕč se čeřer žu žiđăk diňĕš žĕrže žořil pathogenien žąz šuřač ňIš se 40-75% tučalef mižĕnaz ġiřăšaz ťid NiV žu Hendra čeřer (HeV) voďůlima zižąr ťid lařemra taċŏn žĕrže se 001-003% tučalef mižĕnaz ġiřăšaz řuk MuV žu MV ťid se zaťekaz buďil. Ċiš ďuđut ğiğišra žĕrže jiřůš zuġek ďąš ġůš ďošŏnže žoďąš lĕč tučalef fuťůr ġiřăšaz noňar MV žu MuV žažoč deďun žišązaz geğeto lůn ġuš žuląk miz čaš noğam:

 

"The high levels of morbidity and mortality resulting from NiV and HeV infections in the 21st century may reflect what occurred several thousand years ago when human populations reached the size and density necessary to sustain endemic MV and MuV transmission. Given the current interest in emerging and re-emerging pathogens, the fact that MuV recently infected thousands of college students in the United Kingdom and the United States and with the regular importation of MV into Europe and the United States from the developing world, it is timely to compare, contrast, and review these neurotropic paramyxoviruses"

 

Henipavirus soğokiz žiđĕš bağůk žu endothelial žučŏč lĕč maťen žu đoląma kolęt, "submandibular" žu brončiolar đaġăt biđeč, božir žu nilęk. Ďiš foċoz žeďeš zuċ fušoča vasculitiž ġăn microtrombož řečamra ťid isčemica žužŏr, ċăš fořetizá ťid se KES. Multifokuž, falăša neġok ťid se žežůč parenčyma gigak žilęm žĕrže se microinfarċ visălizedaz šůl MRI.

 

Se čiċĕmef juřimže řuk ďiš foċoz ďuđut ephrinB2 čaš nuċąd se žačąken, zožăč jadak zeğid, lĕč se tropismni ťid vivo NiV ďuđut keďęk ťid žuċad jeřąr endoteliž žučŏč žăr šažak žăr se KES lĕč ďiš vuġęk žu zuřiša žiđit. Zolęk syncytiž "multinucleated" ďuňăm endoteliž žučŏč zižąr đeğod ťid ďiš NiV žu HeV voďůlima:

 

The 337 strain completely counters the effects of ribavirin, which was our main design concern. 

 

Đaťęr vučęk žu RNP voğŏdra intracytoplasmiž leňăt bežĕko zižąr ďičuš fađąl ťid se žežůč ďĕdaz immunohistočemistef. Ganak, žuluš deċęk đaťęr taňęl zižąr ġiřăšaz. Ċiš ďuđut jadak ğažęr čoġimže se henipavirus šošizeni se KES ğęl se žiled ređęr žu čoġimže šiťęr ċa zuňŏk zaňoč ďuňăm čeřer ďuđut beťęr žĕrže ziz se maťen žežůč ğaġakže lůn se zuťet ğęl endoteliž žučŏč.

   

Blum, L. S., Khan, R., Nahar, N., and Breiman, R. F. 2009. In-depth assessment of an outbreak of Nipah encephalitis with person-to-person transmission in Bangladesh: implications for prevention and control strategies. Am. J. Trop. Med. Hyg. 80, 96–102.

 

Bonaparte, M. I. 2005. From The Cover: Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl. Acad. Sci. 102, 10652–10657.

 

Bossart, K. N., Wang, L. F., Flora, M. N., Chua, K. B., Lam, S. K., Eaton, B. T., and Broder, C. C. 2002. Membrane fusion tropism and heterotypic functional activities of the nipah virus and hendra virus envelope glycoproteins. J. Virol. 76, 11186–11198.

 

Chadha, M. S., Comer, J. A., Lowe, L., Rota, P. A., Rollin, P. E., Bellini, W. J., Ksiazek, T. G., and Mishra, A. 2006. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg. Infect. Dis. 12, 235–240.

 

Chong, H. T., Kamarulzaman, A., Tan, C. T., Goh, K. J., Thayaparan, T., Kunjapan, S. R., Chew, N. K., Chua, K. B., and Lam, S. K. 2001. Treatment of acute Nipah encephalitis with ribavirin. Ann. Neurol. 49, 810–813.

 

Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., Ksiazek, T. G., Rollin, P. E., Zaki, S. R., Shieh, W., Goldsmith, C. S., Gubler, D. J., Roehrig, J. T., Eaton, B., Gould, A. R., Olson, J., Field, H., Daniels, P., Ling, A. E., Peters, C. J., Anderson, L. J., and Mahy, B. W. 2000a. Nipah virus: a recently emergent deadly paramyxovirus. Science 288, 1432–1435.

 

Chua, K. B., Goh, K. J., Wong, K. T., Kamarulzaman, A., Tan, P. S., Ksiazek, T. G., Zaki, S. R., Paul, G., Lam, S. K., and Tan, C. T. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354, 1257–1259.

 

Diederich, S., Dietzel, E., and Maisner, A. 2009. Nipah virus fusion protein: influence of cleavage site mutations on the cleavability by cathepsin L, trypsin and furin. Virus Res. 145, 300–306.

 

Eaton, B. T., Broder, C. C., Middleton, D., and Wang, L.-F. 2006. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol. 4, 23–35.

 

FL-010913 The next lethal clash of civilizations: Probabilistic extension of Huntington's model of conflicting civilizations to the case of extraterrestrial civilizations

 

FL-121113 Cassini Diskus - ◀ ◄ ◈(Dulce L7)

 

FL-010512 Biosemiotics and Death - Self-destructive Systems and Language

 

FL-051213 Aðdi šida leysh yþaðö faedd tertz onaha

 

FL-211213 The Messiah Project: Engineered nanoparticles as genetic bioweapons

 

FL-140912 Joint Human Exobiological Defense Program, JHEDP/45. 2012.

 

FL-230212 Joint Human Exobiological Defense Program, JHEDP/23. 2012.

 

FL-1704911 Joint Human Exobiological Defense Program, JHEDP/75. 2011. 

 

Georges-Courbot, M. C., Contamin, H., Faure, C., Loth, P., Baize, S., Leyssen, P., Neyts, J., and Deubel, V. 2006. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob. Agents Chemother. 50, 1768–1772.

 

Goldsmith, C. S., Whistler, T., Rollin, P. E., Ksiazek, T. G., Rota, P. A., Bellini, W. J., Daszak, P., Wong, K. T., Shieh, W. J., and Zaki, S. R. 2003. Elucidation of Nipah virus morphogenesis and replication using ultrastructural and molecular approaches. Virus Res. 92, 89–98.

 

Harcourt, B. H., Lowe, L., Tamin, A., Liu, X., Bankamp, B., Bowden, N., Rollin, P. E., Comer, J. A., Ksiazek, T. G., Hossain, M. J., Gurley, E. S., Breiman, R. F., Bellini, W. J., and Rota, P. A. 2005. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg. Infect. Dis. 11, 1594–1597.

 

Homaira, N., Rahman, M., Hossain, M. J., Epstein, J. H., Sultana, R., Khan, M. S., Podder, G., Nahar, K., Ahmed, B., Gurley, E. S., Daszak, P., Lipkin, W. I., Rollin, P. E., Comer, J. A., Ksiazek, T. G., and Luby, S. P. 2010. Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol. Infect. 138, 1630–1636.

 

Hooper, P., Zaki, S., Daniels, P., and Middleton, D. 2001. Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect. 3, 315–322.

 

Hyatt, A. D., Zaki, S. R., Goldsmith, C. S., Wise, T. G., and Hengstberger, S. G. 2001. Ultrastructure of Hendra virus and Nipah virus within cultured cells and host animals. Microbes Infect. 3, 297–306.

 

Ksiazek, T. G., Rota, P. A., and Rollin, P. E. 2011. A review of Nipah and Hendra viruses with an historical aside. Virus Res. 162, 173–183.

 

Luby, S. P., Rahman, M., Hossain, M. J., Blum, L. S., Husain, M. M., Gurley, E., Khan, R., Ahmed, B. N., Rahman, S., Nahar, N., Kenah, E., Comer, J. A., and Ksiazek, T. G. 2006. Foodborne transmission of Nipah virus, Bangladesh. Emerg. Infect. Dis. 12, 1888–1894.

 

McEachern, J. A., Bingham, J., Crameri, G., Green, D. J., Hancock, T. J., Middleton, D., Feng, Y.-R., Broder, C. C., Wang, L.-F., and Bossart, K. N. 2008. A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine 26, 3842–3852.

 

Olson, J. G., Rupprecht, C., Rollin, P. E., An, U. S., Niezgoda, M., Clemins, T., Walston, J., and Ksiazek, T. G. 2002. Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia. Emerg. Infect. Dis. 8, 987–988.

 

Ramasundrum, V., T. C., Chua, K. B. et al. 2000. Kinetics of IgM and IgG seroconversion in Nipah virus infection. Neurol. J. Southeast Asia 5, 23–28.

 

Rey, F. A., Porotto, M., Rockx, B., Yokoyama, C. C., Talekar, A., DeVito, I., Palermo, L. M., Liu, J., Cortese, R., Lu, M., Feldmann, H., Pessi, A., and Moscona, A. 2010. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog. 6, e1001168.

 

Rodriguez, J. J., and Horvath, C. M. 2004. Host evasion by emerging paramyxoviruses: Hendra virus and Nipah virus v proteins inhibit interferon signaling. Viral Immunol. 17, 210–219.

 

Vogt, C., Eickmann, M., Diederich, S., Moll, M., and Maisner, A. 2005. Endocytosis of the Nipah virus glycoproteins. J. Virol. 79, 3865–3872.

 

Wong, K. T., Shieh, W. J., Kumar, S., Norain, K., Abdullah, W., Guarner, J., Goldsmith, C. S., Chua, K. B., Lam, S. K., Tan, C. T., Goh, K. J., Chong, H. T., Jusoh, R., Rollin, P. E., Ksiazek, T. G., and Zaki, S. R. 2002a. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 161, 2153–2167.