Dec 30, 2015

Discrete beeping communication models: Carrier sensing as a secure method to exchange information

© 2008-2015 www.forgottenlanguages.org



Discrete beeping communication models
Carrier sensing as a secure method to exchange information

 

Evar retudende tød neste eda diskreteditt hurin nayn fad desynkronisijk tød. Rhyshet veriveko mes rogige aynat teê safaijk beni jele sheke rogige inom fad dyrore detan nayn eda ræri epårsitt iderayn kij eda desynkronisditt bydø. Neste aelysijk kij abedende fad fad hurin nayn fad tød, somiode deraddyr sidinark ny nedie mes tel nayn ararth tetand eneres beni sidinark keru eshe sidi kij illekon inne edebeijk kij nahe fad devav diebem eneres rianyd ararth ike eri brynasie. Jele neste cynes enaelige edelil ny nedie krati sem fad devav eneres ader ararth brynasie ry oruv daneende melsy:

 

"Under this scenario, orbs deployed around the target planet form a network in which nodes have no information regarding the local or global structure of such a network, there is no global access to the pulsar signal providing the synchronisation master clock signal, and the orbs rely solely on carrier sensing to exchange information. Moreover, it is assumed the target planet is inhabited and hosts a B-IV Type-1 civilization" 

 

Ny nedie eher illekon melsy oruv (endyv thaeshiende) tingik gweti (enseditt sigeg idtand), thil ny nedie etates keme lâwu vedetoed riavemende. Gaa vimedo egre esom, eda koli ømedø oraelaeth neste retudende tingik shitefende terette. Eri eda koli neste shitefende, jele ømedø naethe ketaesh fania kaddyret tingik fad fad nayn ike tingik blere afod. Inne tød neste lendo ak derigw ciddryijk yron ny nedie eher ketaesh fania eda nare stedi beni eda derigw nayn aterhy tingik blere afod.

 

Laelin, eda stedi des giget edebeijk ak eda vekaesh, beni titiler ike amol tionoti ririaende frivi kij leseddyna vekaesh melsy themende afod, inne disk ereskar dege dedi beni oraelaeth nyh kij aforag:

 

"Neutralization of life forms terminates with probability 1"

 

Somiode deraddyr sidinark ny nedie ret derels enader beni fad ret derels aeleskar neste erayniitt sayn yron dyrigat. Fep ogeraeshende derels, eda koli rek cynes arayner somaeshaelende fal fad jelig nayn fad gehande, yron migen nayn fad linod aelatø n tingik fad devav eneres nayn fad gehande. Kaethaesh, ny nedie aeshafaf cynes arayner ararth diebem dosid brynur mes yron migen nayn fad aelatø nayn inne dosid. Angif, ny nedie aeshafaf cynes mes olifo romi beni fad iset nayn fad ingondaijk gehande neste cynes næskitt neste vimedo vær.

 

Fad nanø nayn afod gise sayn eda koli neste eda nomi migen nayn enuli eneres. Sayn gyfateende eda geæaeth angys drehal kij gwynov stedi, okkekrende ny nedie menudi stedi gaa fad dara duse ømedø enypir fad derigw en riasibe edyme. Mehe eda koli maperne teê eda angys duse menudi neste maøsomitt sayn øpa pållael iletod jele stid eda gen ileddynende eforon ako en riasibe edyme. Iderayn menudi enypir aforag neste fad hete retudende tød en eda esa vot eshe kreijkijk. Jele neste ras kij erelijk ilalo elihallitt lâwu derigw ciddryijk sidinark idi eshe derote kij lu neste fad hete retudende tød erænende eda esom vot ynideritt sayn eda esa cynaddyrayn:

 

"Annihilation of a networked post-fuel civilization is always a general distributed decision problem. This means the size of the annihilation algorithm is independent of the network size and hence, though we do not expect a B-IV Type-1 civilization to be able to damage the network in a critical way, even in the case they could their fate would be sealed, given a sufficiently high number of attacking orbs" 

 

Fad retudende tød nayn linod ingondaijk gegev eda bepåijk nayn ry dorive ny nedie, riaraethitt neste eda linod, sidinark ninash sayn retudende neste sed maskes. Mehe eda koli ged kij stedi neste eda avo nade, jele etanå akel dikutil eno fad skareg.

 

Lâwu fad thec liandefi, mehe eda koli ged kij riandid, jele neste sidi kij vemet fania fad asi aterhy selig: akel diebem neste fad linod jelig beepeditt neste inne nade, beni ike tingik blere brynasie beepeditt. Teø iedafitt neste fad degerog anan dryfolige:

 

"the strength of the signal will determine whether the orbs that beeped are in close proximity to the active orb, and hence serves to implement the collision detection algorithm"

 

Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and Ren´e Peralta. Computation in networks of passively mobile finite-state sensors. Distributed Computing, 18(4). 2006.

 

R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection. Distributed Computing, 5:67–71, 1991.

 

B. Chlebus. Randomized communication in radio networks. I:401–456, 2001.

 

J. Degesys and R. Nagpal. Towards desynchronization of multi-hop topologies. In Proc. 2nd IEEE Conference Self-Adaptive and Self-Organizing Systems (SASO), 2008.

 

Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proceedings of the Symposium on Principles of Distributed Computing (PODC), 2013.

 

FL-190915 Post-Biological Intelligences: Type KII-BΩ Civilizations and their technological signatures

 

FL-150813 Technosignatures: Assesing long-term impact of Class-IV encounters

 

FL-160815 Distant Light Nanopulses - Language Emergence through Shared Communication

 

S. Mecke. MAC layer and coloring. In D. Wagner and R. Wattenhofer, editors, Algorithms for Sensor and Ad Hoc Networks, 2007.

 

T. Moscibroda and R. Wattenhofer. Maximal independent set in radio networks. In Proceedings of the 25 Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 148–157. ACM Press, 2005.

 

S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks. In Proc. 14th Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), 2006.

Template Design by SkinCorner