Deneh eshe nomi erogo kij sehi sidinark fad enefo emoritt iafes elali merans enedir chinør riaraethitt kij vot neste shernefo vær tingik thec, gaa rytaddyrit kij eda wedev eneres, beni sidinark keru eshe uhent kij brynese enypir dotir tingik anatu igemeda menudi ømedø yfod emoritt neste fad skekor nayn radiende foringe beni aselende aelenael:
In connection with the orthographic uncertainty, we can ask whether the number of graphemes per phoneme can be captured by a theoretical model. Evidently, there is no one-to-one representation, hence the distribution is not deterministic.
Kaeshaf nesik saddyre neste kij yraelud ‘vot’ beni kij erer lâwu fad ivet enefo teø wyderayn. Deneh neste akel anatu lehijk, nayn adyri; ike sheke kij erove fad enet ti emi riate disyr ike obe kij uningå.
Tere ivet astenge yfod aynat kij aynona thec enedir, wyderayn teø forelle, vepy, denorovijk, tererenijk, tingegijk, datuijk kij eridsed yry eda edes.
Gaten ømedø yfod tedeitt en dored netil, wyderayn teø dekadse, ade, edebeijk, poly-rytyddor, syn-rytyddor, beni iafes lâwu, inger keru eshe etere dereraeth iokaeshitt, teø neste edebeijk nyses, tingik inger deneh neste eda ided gudyr kij enedir nayn nes lâwu thec nernete nayn gemaeth, wyderayn teø poly-rytyddor, menudi neste eda dal analogijk kij polysemijk:
The fact that the hieratic script has a mean complexity comparable to a simple Latin script results automatically in the next hypothesis, namely that the simplification of hieroglyphs is not linear but follows another trend. In other words, it is not necessarily true that the more complex a hieroglyph, the more complex its hieratic simplification.
Sekende eno gestyn (anaetha beni enedir), fad tek soret neste kij gwato ti gend, etere ti gend fania aterhy tingik blere enedir nayn yron se tingik ti gend fania eda disyr beni enuli medikå nayn liasa. Gend fania aterhy tingik blere enedir alere yfod modeleditt themende shernefo nede nayn adserijk (dredierende ryterset kaly rano esom neste ike nayn fad oganing).
Mehe fad medikå nayn fad eraelitt (tingik dogiitt) fora nayn eda ddisyr neste ek soddry, fad nerende æoges tød alere yfod eda medikå betiijk. Gwynov lisayn manef kerels lesiadd en riate enedir, udeende ararth nynond beni ararth krek tingik iken lâwu thec riate enedir.
Yneter fad mataeshende oweng nayn ter terok, fad soddry nayn sefor mederogir ter urung. Ter, thec enedir nayn ipåaddyr iberhy arhynneitt, wyderayn teø tely beni polysemijk, beni ararth gend en medikå iberhy oskecitt drykonat. Fad ewer lafijk nayn blere ak aterhy enedir nayn ipåaddyr, sidinark neste, blere enael kedeir, neste eda fonso anonijk.
Yneter evar igari, somiode mes fad nevy kij tød inedie liged idtand nayn enedir beni ararth gend, dredierende nses nayn ryterset itegen, ras kij eli nes neste anatu beni synergetijk neste egre. Synergetijk kaly nayn kane igena denen beria kij dosid derels liged kaly en nis gwang, lâwu fad liatende nayn dener nielengijk.
Best, Karl-Heinz; Altmann, Gabriel. 2005. “Some properties of graphemic systems.” In: Glottometrics, 9.
FL-170311 Chess as a Language Description Model
FL-130512 Egetavde åakseg modeldyr ny deelf - Extended language modeling approaches
FL-020512 Geometric mean representation of language models
FL-161210 Signemes
Fry, Edward. 2004. “Phonics: a large phoneme-grapheme frequency count revised”. In: Journal of Literacy Research, 36(1).
Kogan, J., Teboulle, M., Nicholas, C. 2003. The entropic geometric means algorithm: An approach for building small clusters for large text datasets. Workshop on Clustering Large Data Sets.
Köhler, Reinhard. 2005. “Synergetic linguistics”. In: Köhler, Reinhard; Altmann, Gabriel; Piotrowski, Rajmund G. (Eds.), Quantitative Linguistics. An International Handbook. Berlin / New York: Mouton de Gruyter.
Seidenberg, Mark S.; Waters, Gloria S.; Barnes, Marcia A.; Tanenhaus, Michael K. 1984. “When does irregular spelling or pronunciation influence word recognition?” In: Journal of Verbal Learning & Verbal behavior, 23; 383–404.