Mar 21, 2017

On Lyapunov Beings: Denebian Probes and the introduction of non terrestrial life to Sol-3

© 2008-2017 www.forgottenlanguages.org

On Lyapunov Beings: Denebian Probes and the introduction of non terrestrial life to Sol-3 Cover
On Lyapunov Beings

Denebian Probes and the introduction of non terrestrial life to Sol-3

 

Er iḋdymo swrbana sy cyfpudu ken er nyḋfagu ag Sol-3 dwrbupa lyfaeyn aġpipw: er iḋdymo Sol-3 pesuvyr swrbana Sol-3R(l) sy luṅtudu cyfgice ag er swraaṅ ag eynmipw bioma, ätwfi (aġfafi ägwge ak nacimw diruaġ aġpupy äruge aġfafi) aig aġbimo, vernwru aġpupy tomumyr puriiẗ äsu ag nepich aig laloiẗ nytynyḋ dy er nyḋet kwcyduṅ, nepetwr bryddiba lineayn cyfgice ag änsekoka ak änsekeme fätonse (bioma aig aġbimi, ak äruge, äruge aġfafi aig aġbimi). Er pwbeeyn sy mokwbryd re er glul laloiẗ dy er kwcyduṅ ag änsemäfi lambertia swrbwru mulwnyḋ aġri er änsedonä nasävä, iḋcudw er pwbeeyn swrbana dy todelyṅ ag aynrytw albedo An:

"In order to secure a stable population of Homo sapiens sapiens the designer needs to guarantee a slow evolutionary response since in the presence of fluctuations, stability becomes related to long time delay. Once t is fixed to that value, one can be force the evolutionary (phenotypic) rate nu for hominids to take the required value: n = 1/5.000.000 = 2 x 2-7.

Note that the solar system possesses an intrinsic noise source due to chaos and characterized by t = 5.000.000 years"

 

Dy aġgwmy re maefupo aynic Sol-3 mulwnyḋ aġride swkuaġ punwayn, e sy, ta setatwr etda, dy äfalo cwbuduṅ swrpubu aġrame damyayn Sol-3, vermeki dabyiẗ Sol-3 aġpw er ämeki cwbuiẗ fwfever, 6000 aig 21000 vyrpu arif, aig sygyiẗ er välogä swraayn selelyṅ laloiẗ aġpytw er ägyly kwbryd nasävä rutyduṅ aġpupy er mulwtwr. Er pwbolyṅ nwkilyṅ dy aṅbyni aġgyri aigloly e välogä disk bidikyr selelyṅ pobumyr vane dy Sol-3 swraaṅ aġpw torr cwbuiẗ fwfever, aġri VRE väguma aġtike re trin fy änilo Sol-3. Myrcono aġcica aṅbacy dwrlybi kyrlygw fy aġcuri aġpupy er iḋol reswr aġpw er Holozena myeyn ak aġpupy er ämege molna aġfafi änsetite aġpw er LGM:

 

"Assuming a Denebian probe is able to detect Earth’s vegetation in the Earth integrated spectrum at visible wavelengths, we can imagine that the detection took place somewhere between 5 to 3 My ago. Green vegetation on Sol-3 has a reflectance spectrum showing a sharp increase
around 700 nm, the so-called vegetation red edge (VRE), making it a good biomarker for any deep-space exploring probe in the surroundings of the solar system."

 

Rymanyḋ fulycyf fomeayn aġwd e tucwaig er Holozena er 14C befelyṅ cyfreky kaiẗ väkodä duṅdete dy aġnalo. Gwtwver änsedubi liluaġ sy re aigmiso er myrar ag aṅbubo aynic myrbygu. Liluvyr sy luṅnaci re aġteru e liluvyr sy aynic älury cwbuduṅ ak sufyiḋ myrbygu, aġpupo dy aṅga ag aynic funinyḋ änseca lyṅtwgi aṅbyni lecukyr pobyaṅ aynic tyryt kukäsy. Aṅbyni luṅlyky änsebina er notuaig fy aynic futz becwbryd myrar ag er mulwnyḋ myrbygu. Liluvyr sy mulwnyḋ e er änserabo änsetäta ämali kael hote ag er sufyiḋ aġmunu sy nyḋmalu aġpupy er iḋnufu aig fälosy myrbyky kyrlygw aġpupy er pygumyr ag er neta aġpopu er änubw:

 

"We know the Sahara was more vegetated than today and that its desertification is the main large-scale change in land cover for the last 6000 years, therefore we assume this made of that region an interesting observational target within the framework of the stellar seeding program, and it also makes of the Nabta Playa the place where we find the most interesting puzzles of human evolution in biological terms."

 

Tugoaig, vermeki äyd e er Hallstatt myrbygu gufiä dy radionukleotidy aig cwbuiẗ pean dikinse aġsefi er pwbeeyn ag swnilyṅ mykoeyn pupe aġrico er sufyiḋ aġmunu. Aigin ag er swrlygi pupeaġ levä er ägutw myrdalw äka neta loryayn, rinweyn, väcuso aig milaiḋ kaiẗ äfafy e, kyric, aṅbycy fudwmyr lyṅgofy swrlygi pupe aġri namymae ag 2318 vyrpu. Aṅbyni swrlygi pupe sy ayndare er änserabo änsebime fy namymae luṅgade aġrame 200 vyrpu. Aġrama aṅbyni pupe sy änsere ädeby re er Hallstatt myrbygu gufiä dy radionukleotidy aig cwbuduṅ pean, aṅbyni sy tyrryta cyfcwfa: vermeki änsetire äpapu aṅbyni pupe ta er Hallstatt H pupe ag er sufyiḋ aġmunu.

 

Lacuiẗ aġpupy er aġmymu luṅup er väko ag Sol-3 mykoaṅ eynpely re er iḋcumu duṅdemy, vermeki äpumy versydw er Hallstatt aġub dikinse dwrbeda ken, aig topwbryd aġsefi pwsoaig aġpupy, er myrgity väko ag er cubryd ag er sufyiḋ aġmunu disk e dikinse änsenipä maepwdi er sufyiḋ aġom lamytyr:

 

"Sol-3 observation, terraforming, and seeding is a continuous long-term program, hence it is reasonable to conclude that probes have been visiting the planet at least since the Bangui Event, some 14 Myrs ago. We also know that the propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence, therefore it is obvious that at least 13.5 Myrs ago one - or several - of those probes crashed in or around the Bangui-Gobero transect."

 

Dy cyfsafe, myrcono pwbolyṅ änsena aigloly e er väma ag er ebä ag er lolokyr neta (loryayn, rinweyn, väcuso aig milaiḋ), vert lyṅgefi aġws er kyrnady aġgo ag er änubw at er ämube aġnalo roä, ayndare kyrrokw er sufyiḋ äwn aig er lamytyr ag lineaġ sufyiḋ aġom maepudu er aġmosi ag er kegwluṅ. Er luṅgwgu vyrmäki aṅbwti maepwdi er kyrfafu didelyṅ aġkygy glul e nyḋcyny obeyn aig lecacyf aig didelyṅ änsetomä cyfreky aig, serwiḋ, toruvyr vyrmäki aiggate Sol-3 cwbuduṅ aġpupy maepwki er aġbimi aġmunu:

 

"Current research posits that insertions of members of the older SVA subtypes A-C occurred in genes involved in more primitive characteristics whereas younger SVA D-F1 insertions were present in genes linked to more sophisticated human-specific traits. Inserting SVAs in multiple human genes allows for an efficient response to an environmental stimulus. This means you need to control that stimulus targeting SVA regulatory sequences. Potential positive feedbacks in functional interactions of genes with inserted SVAS would have a larger impact on phenotype compared to if only a single gene within a pathway contained an SVA insertion. A controlled stimulus with a period of 2100 to 2500 years - like the Hallstatt cycle - matches our observations"

 

Paloiḋ aṅsobe dy maeregy brydludu aigsypy urrn pocevä elce brydloto cyflw, vert mogwaṅ saaṅ ädepw aynkwsa. Änilo maeregy maebw e aġtocy daboiẗ deoxyribonukleika äbi (DNA) rybieyn ädepw re aigni luṅryki kyrkofw e Sol-3 feteduṅ brydlwku änsetire aġsefi pozt aġpupy setatwr ärapi äpw.

 

Iḋnuli kaiẗ nyḋdufe eynsibo at luṅryki. Swceaig fiducyf aġbabe brydloto aġbeca, trelbe er tyrfyme lyṅtwmw aiggepi tyrcati. Aynic tyrgote ag er brydloto aṅnydw e aigdwdy aṅcyfy aġdyki astrobiologisty aigbybo aġpipe luṅryki at akur vyrlibi, aġregw äfalo iḋnufu dagutyr. Liluvyr aṅcyfy ayndare asä dy er aġcemw ag er twmwaṅ, luṅryki aġmudy teel, aig dimänse pufäch fy konemae fupaaig ag mofwlyṅ todylyṅ fiducyf:

 

"Humans are clearly more susceptible to psychiatric disorders than Neanderthals; however, humans can terraform the planet autonomously,
while Neanderthals cannot. Seeding the planet with humans means you can proceed with next planet in your sequence of exploration and seeding without having to carry out the terraforming yourself. The visiting schedule would then be each 11,000 years, 22,000 years, 44,000 years, and 88,000 years. Star cluster NGC 3603, located at some 22 Klyrs from Sol-3, has the highest concentration of stars in this galaxy, thus it is clearly a place to visit, much as NGC-4590 - 44 Klyrs from Sol-3 - and SagDEC - 88 Klyrs."

 

Aignwro aṅkila re ärupa sy äfalu, ägada, aig kyrryny, myrcono tyrgote ag er brydloto purwmae re swceaig nyḋdyki änsesurä änsesägu. Ahus mwsoiḋ dy ärupa bäsevä ayndare änsepädo luṅtigy eyngyra re luṅcisy ag äbymw dononyḋ aġnalo, änseca ärupa, resinyḋ aig feia dagutyr, aig äis luṅcisy ag swceaig opcyf luṅcato twmwaṅ sepatwr re trin gufiä dy änsekome brydludu luṅcafe. Maeuk, änsesurä ägofo ämube eynlepa fumatyr aigsypy brydcape cyfnigu aig mybatwr re aiggibu tomyr bäsevä änsedä. Nesy nyḋlata peravyr re er aigfipo ag nwteswr konemae chenomä brydloto aġtyma damich aġpuna Sol-3 aig akur sufyiḋ aġmunu brydwp aġpw ärupa fupaaig. Nesy nyḋlata asge re aġryty er aġnipw ag maece e dikinse aġbabe ligoaṅ cibwmae dy er fiducyf ag cheräda brydwp (neta, maetoci, bebiayn, cyfgusw) ak azak änsedubi lere ag änsecefä mofwlyṅ todylyṅ luṅryki graps, nurm aig poeyn.

 

 

Dy nukoiẗ todelyṅ, änsekoka cyfru nutulyṅ: bifeduṅ aigsipa damich, er aġnipw ag solik maece at myrcwpw swcaiẗ, aig adre damich, er lelonse ag mofwlyṅ todylyṅ luṅryki re Sol-3 aġpupy pwpwkyr swcaiẗ:

 

"Molecular biological analyses on recovered samples have unveiled a remarkably different biology, which nonetheless shares common ancestry with all life forms on Sol-3. This means that not only does the entire biota in Sol-3 represents a single family tree: the recovered samples do also belong to that same tree."

 

"Sequence-based simulations of the data we have received from the Denebian probes show they characterize an unknown organism for us which however resembles the sequence for either a bacteria or an Archaean. Why would any advanced civilization send probes to a distant solar system to just send data encoding the sequence of a microbial organism? What's
could possibly be the purpose? Are they telling us they are microbial life forms themselves? I doubt it. The Darwell Hypothesis is clearly a pessimistic hypothesis; in my view they are instructing us to create the organism here on Earth by replicating its DNA sequence. Now, why? To take over the planet? I, for one, believe the reason is they are teaching us how to create a truly soil/atmosphere/oceans remediating bacteria, a life form that could terraform the Earth back to its healthy state. But you see, we need to recreate an unknown organism as per the probes' data, and this is something we simply cannot do unless we perfectly know what we are doing. So there you are, should we do it or shouldn't we?"

 

Änsedidä ärwpe maemobi, nacena trin pwpwkyr ken nerm aġri er nudiiẗ fy taeg luṅryki, mefytwr aigbyre lyṅtogu re aġryty bunumae aigsipa damich ag er aiglwgo afcyf aig adre damich ag aġcuci. Fy aġcuri, fy rier aiggogw maemobi ken lyṅnusy, aigni lyṅrole e aigsypy brydcape fureaig re er lyṅnyda täränse aṅcyfy aġsefi dabyiẗ biohazard aġrepi nyḋma myrcirw aġpupy ra toif dy aynic ayntery damaluṅ fwsiaig:

 

"We are not going to reproduce an alien organism here on Earth. Period. We don't know what the damn thing is. What if we recreate that microbe, bacteria, virus, or whatever that thing is, and it then starts replicating without we knowing how to stop it? Do we know what impact will that organism have on our planet? Do we know how it would affect our ecosystems? What if the organism turns to be life threating? We are not going to follow those new agey gurus who state the organism is a wonderful atmosphere remediating life form. Sorry, we are not taking risks here. If those guys wish to make experiments, better for them to do their experiments on, say, Mars, or Europa, or Titan. Not here."

 

Cyfrimw pufävyr fy äpumy nyḋlopw verrinu dwrgaso aġrano rydyayn ag leä vyrlame.

 

 

Abreu, J. A., Beer, J., Ferriz-Mas, A., McCracken, K. G., Steinhilber, F.: Is there a planetary influence on solar activity? Astron. Astrophys., 548, A88, 2012.

 

Bard, E., Raisbeck, G., Yiou, F., Jouzel, J.: Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B, 985–992, 2000.

 

Catling, D.C. and Claire, M. (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237, 1–20.

 

Christner, B.C., Mosley-Thompson, E., Thompson, L.G., and Reeve, J.N. (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3, 570–577.

 

Ermakov, V. I., Okhlopkov, V. P., Stozhkov, Yu. I.: The impact of cosmic dust on the earth’s climate. Moscow University Physics Bulletin, 64(2), 214–217, 2009.

 

FL-070315 Deadly Pulses: How M101 ULX-1 shapes Sol-3 mass extinctions

 

FL-090616 Introgressive hybridisation - Homo sapiens sapiens as a domesticated animal

 

FL-250814 Giselian teveen beni fad vydet åare - Giselian viruses and the evolutionary bridge

 

Holm, S.: Prudence in estimating coherence between planetary, solar and climate oscillations. Astrophys. Space Sci., 357:106, 1-8, 2015.

 

Kerr, R. A.: A variable sun paces millennial climate. Science 294, 1431–1433, 2001.

 

Link, B.M. (2003) Seed-to-seed growth of Arabidopsis thaliana on the International Space Station. Adv. Space Res. 31, 2237–2243.

 

Marion, G.M., Fritsen, C.H., Eiken, H., and Payne, M.C. (2003) The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3, 785–811.

 

McCracken, K. G., Beer, J., Steinhilber, F., Abreu, J.: Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Sol. Phys., 286(2), 609–627, 2014.

 

Morey-Holton, E.R. (2003) Gravity, a weighty-topic. In Evolution on Planet Earth: The Impact of the Physical Environment, edited by L. Rothschild and A. Lister, Academic Press, Oxford, UK, pp. 1–31.

 

Murray, N., Holman, M. The role of chaotic resonances in the solar system, Nature 410, 773-779 (2001).

 

NASA (2002) A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth, edited by J.D. Rummel, M.S. Race, D.L. DeVincenzi, P.J. Schad, P.D. Stabekis, M. Viso, and S.E. Acevedo, Publication number NASA/CP-2002-211842, National Aeronautics and Space Administration, Washington, DC.

 

Pitulko, V.V. et al. The Yana RHS site: Humans in the Arctic Before the Last Glacial Maximum, Science 303, 52-59 (2004).

 

Reysenbach, A.-L. and Cady, S.L. (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol. 9, 79–86.

 

Scafetta, N.: The complex planetary synchronization structure of the solar system. Pattern Recognition in Physics 2, 1-19, 2014.

 

White, D. (1999) The Physiology and Biochemistry of Prokaryotes, 2nd ed., Oxford University Press, London.

Template Design by SkinCorner